

2001 Marking Scheme

	2001 Higher Chemistry Marking Scheme											
MC Qu	Answer	% Pupils Correct	Reasoning									
1	A	65	IA Fluorine atoms have electron arrangement of 2,7 \therefore F ⁻ ion is 2,8 (negative ion) B Sodium atoms have electron arrangement of 2,8,1 (neutral atom) C Aluminium atoms have electron arrangement of 2,8,3 \therefore Al ³⁺ ion is 2,8 (positive ion) D Neon atoms have electron arrangement of 2,8 (neutral atom)									
2	В	73	최A H-Br molecule dissolves in water to form acidic H ⁺ ions (hydrobromic acid) 团B NH3 dissolves in water to form alkaline NH4OH ammonium hydroxide solution 코C CO2 dissolves in water to form carbonic acid (H2CO3) 코D CH4 is a non-polar hydrocarbon does not dissolve in a polar solvent like water									
3	D	50	aOH no. of mol = volume x concentration = 0.02 litres x 0.3 mol l ⁻¹ = 0.006 mol $H_2SO_4 + 2NaOH \longrightarrow Na_2SO_4 + 2H_2O$ $1mol 2mol$ $0.003 mol 0.006 mol$ $volume = \frac{no. of mol}{concentration} = \frac{0.003 mol}{0.3 mol l^{-1}} = 0.01 litres = 10 cm^3$									
4	A	37	2mol of Br⁻ ions ∴ 2mol of NaBr f.u. ∴ 2mol Na⁺ ions total of 5mol Na⁺ ions but 2mol Na⁺ ions from NaBr ∴ 3mol of Na⁺ ions from Na₂SO4 f.u. 3mol Na⁺ ions ∴ 1.5 mol Na₂SO4 f.u.									
5	D	58	 ▲ A Temperature increases as exothermic reaction releases heat ▲ B Volume of gas increases as the reaction proceeds: CaCO₃+2HCl→CaCl₂+H₂O+CO₂ ▲ C pH increases as acid is used up during the reaction ▲ D Mass of beaker + contents decreases as as escapes from the beaker 									
6	В	66	$\Delta H = 160 - 190 = -30 kJ mol^{-1}$ (same for uncatalysed and catalysed reactions) Activation Energy for catalysed forward reaction = 35kJ mol^{-1} Activation Energy for catalysed reverse reaction = 35 - (-30) = 65kJ mol^{-1}									
7	С	70	The definition of the enthalpy of neutralisation is the energy released from the formation of one mole of water. The neutralisation of one mole of acid (H ⁺) cannot be used as 2mol of H ⁺ ions reaction to form 1 mole of water for neutralisations with metal oxides and carbonates									
8	С	90	Periodic TableTrendExampleAcross a PeriodIncreasesElementLiBeBCNOFNeElectronegativity1.01.52.02.53.03.54.0-Down a GroupDecreasesElementFClBrI									
9	D	43	 Internet is a hydrocarbon ∴ fullerene has covalent bonding Image: Solution is a hydrocarbon ∴ fullerene has covalent bonding Image: Solution is a hydrocarbon ∴ fullerene has covalent bonding Image: Solution is a hydrocarbon ∴ fullerene has covalent bonding Image: Solution is a hydrocarbon is not a covalent network Image: Solution is not a covalent network Image: Solution is not a covalent network Image: Solution is not a covalent network 									
10	В	80	■A Covalent bonding is intramolecular (inside molecules) 図B Hydrogen bonding is found between molecules containing H-O, H-N or H-F ■C Ionic bonding has lattice of oppositely charged ions and no molecules ■D Metallic bonding is between metals atoms but has no molecules									
11	В	46	 ☑ A element must be a non-metal so is a non-conductor of electricity ☑ B elements are non-metals which form covalent bonds between atoms ☑ C some non-metal elements are gases at room temp and have low melting points ☑ D some non-metal elements are covalent molecular and not covalent network 									

			\blacksquare A gfm O_2 = 32g \therefore no. of mol = mass/gfm = $0.32/_{32}$ = 0.01mol
12	$\boldsymbol{\mathcal{C}}$	66	E B gfm CO_2 = 44g : no. of mol = $\frac{mass}{gfm} = \frac{0.44}{44} = 0.01 \text{ mol}$
		00	$\square C \operatorname{gfm} H_2 = 2g \qquad \therefore \text{ no. of mol} = \frac{\operatorname{mass}}{\operatorname{gfm}} = \frac{0.2}{2} = 0.10 \operatorname{mol}$
			∑ D gfm Ar = 40g ∴ n o. of mol = ^{mass} / _{gfm} = ^{0.80} / ₄₀ = 0.02mol
			\blacksquare A 3mol gas \rightarrow 3mol gas \therefore 3vol gas \rightarrow 3vol gas \therefore no change in pressure of gas
13		75	E B 2mol gas \rightarrow 4mol gas \therefore 2vol gas \rightarrow 4vol gas \therefore increase in pressure of gas
15	U	15	$\mathbf{E}C$ 2mol gas \rightarrow 2mol gas \therefore 2vol gas \rightarrow 2vol gas \therefore no change in pressure of gas
			\square D 3mol gas \rightarrow 2mol gas \therefore 3vol gas \rightarrow 2vol gas \therefore decrease in pressure of gas
			$\mathbb{Z}A \ 1 \text{mol} \ O_2 = 32g \ \therefore \ 16g = 0.5 \text{mol} \ O_2 \ \text{molecules}$
14	R	25	\square B 1mol H ₂ = 2g ∴ 1g = 0.5mol H ₂ molecules = 1mol of H atoms = 1mol of electrons
± 1	U	55	$\mathbf{E} C \text{ 1mol } C = 12g \therefore 24g = 2 \text{mol } C \text{ atoms}$
			IND 1mol Na ⁺ Cl ⁻ f.u. = volume × concentration = 1 × 1 = 1mol Na ⁺ Cl ⁻ f.u. ∴ 2mol of ions
15	C	00	Methane is the main constituent of biogas made by fermentation of biological
15	C	07	materials in anaerobic conditions.
			☑A Reforming: Straight chains rearranged into branched chains or ring structures
16	٨	26	B Hydrogenation: Hydrogen added across C=C double in addition reaction
10	A	30	EC Dehydration: Water removed from structure leaving C=C double bond behind
			🗷 D Cracking: Breaking hydrocarbons into smaller hydrocarbons some with C=C bonds
			⊠A Methanol CH3OH has only one structure and no isomers
17		50	B Propane CH ₃ CH ₂ CH ₃ has only one structure and no isomers
1/	D	00	$oxtimes$ C Trichloroethene CHCl $_3$ has only one structure and no isomers
			$\square D C_2H_4Cl_2$ has 2 structures: 1,1-dichloroethane and 1,2-dichloroethane
			🗷 A Chlorines add onto adjacent carbons not same carbon
10	<u> </u>	00	🗷 B Chlorines add onto adjacent carbons not same carbon
		00	$\square C$ 1mol of chlorine required to turn 1mol C=C triple bonds into C=C double bonds
			ED 2mol of chlorine required to turn 1mol C=C triple bonds into C-C single bonds
		84	🗷 A Secondary alcohol: 2 carbons directly attached to carbon with the -OH bond
10			B Secondary alcohol: 2 carbons directly attached to carbon with the -OH bond
17	U		EC Tertiary alcohol: 3 carbons directly attached to carbon with the -OH bond
			☑D Primary alcohol: 1 carbon directly attached to carbon with the -OH bond
			⊠A carboxylic acid side (side with C=O bond) has 3 carbons ∴ propanoic acid
20		68	\mathbf{E} B carboxylic acid side (side with C=O bond) has 3 carbons \therefore propanoic acid
20	U	00	■C alcohol side has O attached to C₂ of 3 carbons ∴ propan-2-ol not propan-1-ol
			✓D ester is made from propan-2-ol and propanoic acid
			A propan-2-ol dehydrates to form only propene
21	C	50	B pentan-3-ol dehydrates to form only pent-2-ene
61		57	✓C hexan-3-ol dehydrates to form hex-2-ene and hex-3-ene
			D heptan-4-ol dehydrates to form only hept-3-ene
			A Ozone absorbs not reflects harmful ultraviolet radiation
22 1		56	⊠B CFCs break down ozone
		100	✓C Ozone absorbs harmful ultraviolet radiation
			IND CFCS break down ozone
			IMA single esters are used in flavourings, perfumes and solvents
23	С	38	B proteins are made trom condensation of amino acids into a polymer
23			IVIC polyester can be used to make tibres (straight) and resins (cross-linked)
			IND Polyester fibres are not cross-linked and are straight linear chains

24	В	70	Solution A 2 carbon atoms between the amine group $-NH_2$ and the carboxyl group $-COOH$ $\square B$ 1 carbon atom between the amine group $-NH_2$ and the carboxyl group $-COOH$ $\square C$ 2 carbon atoms between the amine group $-NH_2$ and the carboxyl group $-COOH$ $\square D$ 2 carbon atoms between the amine group $-NH_2$ and the carboxyl group $-COOH$ $\square D$ 2 carbon atoms between the amine group $-NH_2$ and the carboxyl group $-COOH$									
25	A	56	 Benzene is found and purified from crude oil B Water is found naturally on Earth and is a raw material C Iron oxide (iron ore) is found naturally on Earth and is a raw material D Sodium chloride (salt) is found naturally on Earth and is a raw material 									
26	В	46	⊠A ⊠B ⊠C ⊠D	IA Sulphuric acid is needed in huge quantities and is made by a continuous process IB Medicines are needed in smaller quantities and made by a batch process IC Iron for steel is needed in huge quantities and is made by a continuous process ID Ammonia is needed for fertilisers and is made by a continuous process								
27	D	52	⊠A ⊠B ⊠C ⊻D	 ■A Hydrogen H₂ is not a reactant or product ∴ equilibrium is not altered ■B H⁺ ions are a product ∴ equilibrium shifts to left (reactant side) ■C Cl⁻ ions are product ∴ equilibrium shifts to left (reactant side) ■D OH⁻ ions remove H⁺ ions ∴ equilibrium shifts to right to replace H⁺ ions 								
28	С	88				[OH-]	= <u>10</u> [H	$\frac{-14}{ ^+]} = \frac{10}{1}$	$\frac{0^{-14}}{0^{-4}} = 10^{-10}$	mol l-	1	
29	A	73	Hydr Et	Acid rochloric s hanoic	Type strong weak	Dissociation Full Partial	n pH Lower higher	Conductivit Higher Iower	y Rate of Reaction with Faster Slower	Magnesium	Volume of s	odium hydroxide reacted Same
30	30 C 37 Half life is the same as the nucleus splitting is the same with the same half-life. The intensity of the radiation is different as 1g of radium metal contains more radium nuclei than 1a of radium axide											
Q31→	Q31→35 are Grid Questions which are a style no longer used in Higher Chemistry. However the content of the questions can still come up in future exams. (If the guestion suggests there is more than 1 answer then there are usually 2 answers)											
31a	E	⊠E Hydı	roger	n bonding	g is fo	ound betw	een mo H-O o	lecules coi r H-N or f	ntaining the f 1-F	ollowin	g bond	5:
31b	A+B (both for 1 mark)	Answe Substa Bonding	er nce Type	A hydrog Pure cov	gen valent	B phosphor Pure coval	us ent	C sodium Metallic	D lithium hydroxide Ionic	hydrogel Hydi	E n fluoride r ogen	F hydrogen iodide Polar covalent
32a	D	Rate of e around 3	enzyr 7°C)	ne activi and falls	ity inc s abov	creases wi ve this ten	th tem nperati	perature, Ire	peaks at optin	num te	mpera [.]	ture (usually
32b	F	Rate of r	radio	active d	ecay i	s unchang	ed by c	hanges in	temperature			
33a	В	Cracking breaks alkanes into smaller molecules with C=C double bonds formed										
33b	D	Hydration is a type of addition reaction where water is added across a C=C double bond										
34	B , D (1 mark each)	⊠A cata ☑B cata ☑C cata ☑D cata ☑E rate	 A catalysts do not alter the enthalpy change for a reaction B catalysts reduce the time taken for equilibrium to be established C catalysts do not alter the position of equilibrium D catalysts reduce the activation energy for both forward and reverse reactions 									
35	B,D (1 mark each)	⊠A sodi ⊠B sulpl ⊠C sodiu ⊠D sulpl ⊠E sodiu	um si nurou um si hites um io	ulphite is us acid + ulphite is ions are ns are s	s solu sodiu s alkal z redu pecta	ble so can im carbond line (weak ucing agen ⁻ tor ions a	not be ate \rightarrow s acid in ts and o nd are	made by a codium sul salt) but oxidised t chemicallv	precipitation phite + water sodium sulphc hemselves: S(unchanged	reacti + carb ite is n D3 ²⁻ +H2	ion on diox eutral 20→SC	:ide)₄²-+2H⁺+2e⁻

2	2001 Higher Chemistry Marking Scheme									
Long Qu	Answer	Reasoning								
1a	Neutron or $\frac{1}{0}$ n	The atomic and mass numbers must balance on both sides of the equation: $\begin{array}{c} 99\\ 43\\ \hline \\ 100\\ 43\\ \hline \\ 43\\ \hline \\ 100\\ \hline \\ 43\\ \hline \\ 100\\ \hline \\ 43\\ \hline \\ 100\\ \hline \\ $								
1b	$^{100}_{43} \text{ Tc} \rightarrow ^{101}_{44} \text{ Ru} + ^{0}_{-1} \text{ e}$	RadiationEffect on Atomic NumberEffect on Mass NumberAlphaDecrease by 2Decrease by 4BetaIncrease by 1No changeGammaNo changeNo change								
1c	<u>1</u> 8	Time (s)No of half-livesFraction Left001161 $\frac{1}{2}$ 322 $\frac{1}{4}$ 483 $\frac{1}{8}$								
2a	Synthesis gas	Synthesis gas is a mixture of carbon monoxide gas and hydrogen gas, made by steam reforming of methane: $CH_4(q) + H_2O(q) \rightarrow CO(q) + 3H_2(q)$								
2b	Answers to include:	System reforming of methane: $CH_4(g) + H_2O(g) \rightarrow CO(g) + 3H_2(g)$ 1markReducing temperature leads to system at equilibrium increasing the temperature which favours the forward exothermic reaction making more products1markCooling mixture below 100°C leads to steam condensing into water. This removes the steam from the equilibrium mixture and the equilibrium shifts to the right to replace the steam which makes more products								
3a	Oxalic acid	PPA Question: Oxalic acid has the formula (COOH)2								
3b	The time taken for purple colour to become colourless	PPA Technique Question: $5(COOH)_2 + 6H^+ + 2MnO_4^- \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O_{purple}$								
3c	¹ / _s or s ⁻¹	Rate is proportional to $^{1/}_{time}$: rate has units s ⁻¹								
4α	Diagram showing: 1mark: valid drying system with calcium chloride	syringe U								
	Imark: dry gas collection system (syringe)	calcium chloride								
4b	6.02×10 ²¹ molecules	$1 \text{mol} = 44g = 6.02 \times 10^{23} \text{molecules} = 24 \text{ litres}$ $0.24/_{24} \times 6.02 \times 10^{23} \text{molecules} = 0.24 \text{ litres}$ $= 6.02 \times 10^{21} \text{molecules}$								
5α	Diagram showing:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
5b	Vinyl acetate has polar covalent bonds Polar molecules are closer together	ImarkHexane is a hydrocarbon and C-H bonds are non-polar. Vinyl acetate contains C-O bonds which are polar due to the electronegativity difference of 1.0ImarkPolar bonds in vinyl acetate give increase intermolecular attractions bringing the vinyl acetate molecules are closer together which raises the boiling point								

60	Arrow recycling sodium	Arrow added to diagram to show sodium hydroxide solution formed in										
υu	hydroxide solution	Stage 2 goes back into the process in stage 1										
6b	Acidic oxide	Acidic oxides react with alkalis e.g. SO_2 , NO_2 and CO_2 Basic oxides react with acids e.g. Na_2O_2										
		Water is removed from aluminium hydroxide to form aluminium oxide:										
6c	Dehydration	$2AI(OH)_3 \rightarrow AI_2O_3 + 3H_2O$										
		Q=I x † = 180 000 x (1x60x60) = 648 000 000C										
6d		$AI^{3+}(l) + 3e^{-} \longrightarrow AI(l)$										
	60435g	3mol 1mol										
	5	3×96500C 27g										
		648 000 000C 2/g x 0.0000/289500										
	Carbon will react with	Carbon will react with oxygen at high temperatures needed for molten										
6e	oxygen and wear away	electrolysis. Once worn away, electrolysis will stop.										
	Enthalpy change for any											
70	particular reaction is	Hess's Law states that the enthalpy change for any particular chemical is										
7α	the same regardless of	the same reaction regardless of chemical route.										
	chemical route											
	Volume of water	Volume of water is required to calculate the mass of water (m) being heated up (llitre of water = 1kg water and 1cm³ water = 1g)										
/b	Temperature at start	Temperatures at start and end are required to calculate the change in temperature (ΔT)										
	lemperature at end	Both m and ΔT are required to calculate ΔH =cm ΔT										
7c	hydrochloric acid	hydrochloric acid + potassium hydroxide $ ightarrow$ potassium chloride + water										
8a (i)	н он 	2-hydroxypropanoic acid hydroxyl -OH group on C ₂ ^h Carbons attached by single bonds ^h Carboxyl -COOH group on C ₁ ^h OH H-C-C-C-C H H H OH										
8a (ii)	x=2	$Ca_{10}(PO_4)_6(OH)_2 + 8H^+ \longrightarrow 10Ca^{2+} + 2H_2O + 6HPO_4^{2-}$										
		pH 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14										
8a (iii)	10 ⁻⁵	$\begin{bmatrix} H^{*} \end{bmatrix} 10^{0} 10^{-1} 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6} 10^{-7} 10^{-8} 10^{-9} 10^{-10} 10^{-11} 10^{-12} 10^{-13} 10^{-14}$										
		$\begin{bmatrix} \text{OH}^{-1} \end{bmatrix} 10^{-14} 10^{-13} 10^{-12} 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} \end{bmatrix}$										
8b(i)	Fibrous are straight and globular are specially shaped	Fibrous proteins are linear structural proteins e.g. collagen Globular proteins are specially-shaped proteins found in enzymes, etc.										
	carbon hydrogen	Type Use in Body Carbon Hydrogen Oxygen Nitrogen										
8b(ii)	cui bon, nyui ogen,	Carbohydrate provides energy v v x Fat provides energy v v x										
	oxygen & nin ogen	Protein Tissue repair and growth 🗸 🗸 🗸										
	,соон	The amide link splits with water added at the split:										
		P H P H										
9a (i)	$\langle \bigcirc \rangle$	<u>hydrolysis</u> +										
		-C - N - at break - C - OH H - N - at break - C - OH - At break - C - OH - At break - At break - C - OH - At break - At break - C - OH - At break - C - OH - At break - At br										
	COOR	amide carboxylic acid aritine										
9a (ii)	1,4-diaminobenzene	1,3-diaminobenzene is drawn at the start of the question. In this structure, the amine aroups (-NH2) are on carbons 1 and 4 instead										
OL		Polyvinylcarbazole is used in laser printers and photocopiers as it has the										
90	special property of photoconductivity											

		Both aldehydes and ketones contain the carbonyl group:								
				0	0		0			
10a(i)	Carbonyl group				ļ. ļ		l II.			
			-	- C —	—C—F	-	C-C-C			
			Car	bonyl group	Aldehyde g	roup	Ketone group			
	Silver mirror		Ac	Oxidising agent	Start Colour Orange	E	End Colour Green			
10a(ii)	formed on bottom		В	enedict's/Fehling's	Blue	Brick	k Red (orange)			
	of test tube		HC	Tollen's Reagent	(Colourless)	Silver r	Brown mirror produced			
			0	C +	$O_2 \rightarrow CO_2$		∆H= -394	kJ		
			0	H ₂ +	$\frac{1}{2}O_2 \rightarrow H_2O$		∆H= -286	kJ		
			₿	$C_3H_6O + $	$4O_2 \rightarrow 3CO$	2 + 3H ₂ (O ∆H= -1804	kJ		
10b	-236kJ mol ⁻¹		Dx3	3C +	$3O_2 \rightarrow 3CO$	2	∆H= - 1182	kJ		
100			9 x3	3H ₂ + 1	$\frac{1}{2}O_2 \rightarrow 3H_2$	0	∆H= -858	kJ		
		•	9 x-1	3CO2 + 31	$H_2O \rightarrow C_3H_0$	₅ 0 + 40 ₂	₂ ∆H= +1804	kJ		
			ndd	3C + 3H ₂ +	$\frac{1}{2}O_2 \rightarrow C_3H_4$	4 0	∆H= -236	k.J		
	Ц				2-1 -07 4					
	H-Ç-H		2	_met	hylhi	1+_2	2_0n0			
110(11)	ННН		5		TYTE			•		
110(11)			<u> </u>		/ `	(<i>,,</i>			
				methyl -CH3 group on C2	4 carb on main	chain	C=C double bond between C_2 and C_3			
	НH									
11 0 (ii)	Catalyst	The large s	urfac	e area on mord	enite allows it	to act as	a heterogeneou	s catalyst.		
110(1)		The morder	nite s traiat	peeds up the re	eforming reacti rol leads to aut	on but is o-ignition	chemically unch	anged itself. urk from the		
11a (iii)	Branch chain helps	spark plug (pinking). Branched chain hydrocarbons and ring hydrocarbons keep the								
	prevent autoignition	molecules far enough apart to prevent auto-ignition before the spark.								
11b	Covalent network	Silicon and SiO2 melts	s at 1	gen are dotn 713°C ∴ SiO2	contains cov	alent net	twork bondina.	t Donas.		
	Chlorine has larger	Sodium and a	hlorin	e are in the same	e period same ele	ctron shel	Il is being filled as	you qo across		
12a	nucleus which pulls in	the period. C	hlorin	e has a nucleus w	ith 17 protons an	nd the larg	ger positive charge	pulls in the		
	outer shell nearer	P has electr	non an	rancement of 2	$P = 85 \cdot P^{3}$ ion b	has elect	ron arrangement	288		
12b	P ^{3²} has an additional	Si has elect	tron a	rrangement of	2,8,4 ∴ Si ⁴⁺ io	n has elec	ctron arrangeme	ent 2,8		
	electron shell to SI	Si ⁴⁺ h	as 2 c	occupied electr	on shells and P ³	³⁻ has 3 o	ccupied electror	n shells		
	Ammonium chloride	and a weak a	lkali (c	immonium hydrox	ide). Hydroxide	OH ⁻ ions f	found in water pair	up with		
13a	solution is acidic	ammonium ion Water splits	ns fro to rei	m the salt and fo place OH ⁻ ions (H	rm molecules: NH •••• → H ⁺ + OH ⁻)	H4 ⁺ + OH ⁻ - but these	$\rightarrow NH_3 + H_2O.$	removed but		
		the addition	al H⁺ io	ons build up and n	ake the solution	acidic.				
		1mol NH4C	: = (1	×14) + (4×1) +	(1x35.5) = 14	+ 4 + 3	5.5 = 53.5g			
		$E_h = c \qquad x \qquad m \qquad x \qquad \Delta T$								
4.01		= 4.10 kJ kJ $= 2.8424$ kJ								
13b	15.21 kJ mol ⁻¹		_	10g I	NH₄CI = 2.842	.4kJ				
		1mol = 53.5g NH ₄ Cl = 2.8424kJ × $^{53.5}/_{10}$								
		= 15.21 kJ mol ⁻¹								
		Endothermic reaction = +15.21 kJ mol ⁻¹								

		$PdCl_2$ contains Pd^{2+} ions and Cl^- ions. The Chloride Cl^- ions are spectator								
14a	$Pd^{2+} + 2e^{-} \rightarrow Pd$	ions but the Palladium Pd ²⁺ ions react and become Palladium metal								
		Pd ²⁺ + 2e ⁻	🔶 Pd (Re	duction read	ction as elec	trons are ga	ined)			
		0		CO + H2O	$\rightarrow CO_2 + 2$	H⁺ + 2e⁻				
		0	O ₂	+ 4H⁺ + 4e⁻	$\rightarrow 2H_2O$					
116		A 2	2	0.200	× 200 ×	11 I+ · 1				
14D	$2U + U_2 \rightarrow U_2$	UXZ	20		$\rightarrow 200_2 + 1$	411 + 40				
		8	O_2	+ 411 + 40	$\rightarrow 2H_2U$					
		add		2CO + O ₂	\rightarrow 2CO ₂					
	Increase in the			loss c	of electrons					
15a	% ovveen in molecule	Oxidation is indicated by: increase in oxygen : hydrogen ratio								
	boxygen in molecule			decre	ease in hydro	ogen : oxyge	n ratio			
	First (nouch)	The initial (roug	h) titration	is used to g	jet an appro	ximate of th	ie volume			
156 ()	First (rough)	and is usually ac	ded in volur	ne of ~1cm [°]	. This will pr	obably over	shoot the			
100(1)	TITRATION IS TOO	actual endpoint	of the reac	tion. Subsec	juent titrati	ons will add	the huthe dram			
	inaccurate to use	until the colour	change in f	ound in the	n volumes w conical flask		by the drop			
		n o. of mol Cu ²⁺ =	volume x c	oncentration	n = 0.0172 x	0.500 = 0.0	086mol			
		C6H12O6 +	2Cu ²⁺ +	2H ₂ O	→ Cu2O + 4	4H⁺ + C6H12C)7			
156	0.0172	1mol	2mol		- -		,			
10D(II)		0.0043mol 0	.0086mol							
		concel	ntration - <u>1</u>	no. of mol	0.0043mol	0.172 mo	-1			
		Concer		volume -	0.025litres	- 0.172 110				
	Sucrose does not react with Benedict's solution	Carbohydrate	glucose	fructose	maltose	sucrose	starch			
		Formula Depetien with	C6H12O6 Blue	C6H12O6 Blue	C12H22O11 Blue	C12H22O11	(C6H10O5)n			
15c		Benedict's Sol	↓ Prick Dad	↓ Prick Dad	↓ Pnick Dad	No reaction	No reaction			
		Reaction with					Turns			
		Iodine Solution	ino reaction	No reaction	ino reaction	INO reaction	Blue/Black			
	1.36	gfm methane CH4 = (1×12) + (4×1) = 12 + 4 = 16g								
160		From Graph: Time for 60cm ³ of gas released for mass 16g = 44s								
100		Rate = $\frac{\Delta quantity}{\Delta quantity} = \frac{60 - 0}{100} = \frac{60}{100} = 1.36 \text{ cm}^3 \text{ s}^{-1}$								
		$\Delta time = 44 - 0 = 44$								
16b	Ethyne C2H2	From graph: mass which takes 56 seconds to release 60cm ³ of gas = 26								
		ETNYNE C2H2 = (2X12) + (2X)	1) = 24 + 2 =	20 d the time	madurama	t will be			
160	Ose larger volume of gas	by using a larger volume of gas collected, the time measurement will be								
100	of time measurement	relative to the size of the measurement.								
	alveanal on	Fats/oils/trigly	cerides con	tain a glycer	ol molecule	joined to 3 t	fatty acids.			
17a	giver of or	In this reaction, the ester bonds between the glycerol and fatty acids is								
	propane-1,2,3,-trioi	broken and the fatty acids form an ester bond with the methanol present.								
		Hexadecane is a	a 16 carbon	alkane with	formula C16H	134 and follo	ws the			
		general formula	of C_nH_{2n+2} .							
17b	C=C double bond	The C21H39 part	of the blod	liesel moleci	ile is unsatui	rated and co	ontains two			
	(or $C \equiv C$ triple bond)	C=C double bond	is (or less II h would be r	kely a c≡c t boodod for t	ripie bona)	to save the	rour dwith a			
		formula of CiaH		101' I	ne group 10	De sururure	awina			
		Oils have hydro	aen added a	icross the C	=C double be	onds (hvdroc	enation)			
17c	Hydrogenation	The straighteni	ing of the co	arbon chains	makes the	molecules fi	t together			
1,0	or Hardening	closer and raise	s the meltir	ng point mak	e a fat. This	s is called ha	rdening			